I assume you meant for the fiberwise rank of $E$ to be constant, say $r>0$ (or at least uniformly bounded above). The answer is "yes" when the Stein space has finite dimension (equivalently, when its analytic irreducible components, all of which must be equidimensional via consideration of their connected normalizations, have uniformly bounded dimension). There is no need to make a "global finite generation" hypothesis (which would be hard to check in practice anyway); dimension finiteness of $X$ is entirely sufficient.In fact, for induction purposes it is better to consider more generally $E$ that is merely a coherent sheaf for which its fibers $E(x)$ at all $x in X$ have uniformly bounded dimension, say at most some $r>0$. We will show that any such $E$ is generated by finitely many global sections. Then when $E$ is a vector bundle with fiberwise rank $le r$ we can build a finite trivializing cover governed by where various subsets of size $le r$ in the global generating set constitute a fiberwise frame. The main content in the argument will be the global theory of analytic irreducible components and their equidimensionality. We may assume $X$ is non-empty. Let $d ge 0$ be the dimension of $X$. If $d=0$ then $X$ is topologically discrete (with artinian local ring at each point) and everything is clear. Suppose $d > 0$, and let $X_i$ be the (locally finite) set of analytic irreducible components of $X$. For each $i$, choose $x_i in X_i$ not lying in any other $X_j$ (as clearly exists by local finiteness of $X_i$ in $X$ or many other reasons). Let $e_j^(i)_1 le j le r$ be a spanning set of the fiber $E(x_i)$. The set $Z$ of points $x_i$ in $X$ is discrete, and with the reduced structure we get a closed immersion $h:Z hookrightarrow X$. Let $s_1, dots, s_r$ be global sections of $E$ such that $s_j(x_i) = e_j^(i)$; this exists because of the Stein property of $X$ and the surjectivity of the map of coherent sheaves $$E
ightarrow h_ast(E|_Z) = bigoplus_i (h_i)_ast(E(x_i))$$ where $h_i: x_i hookrightarrow X$ is the natural closed immersion (surjectivity uses the discreteness of $Z$).Now consider the natural map $phi:O_X^r
ightarrow E$ defined by $(a_j) mapsto sum a_j s_j$. By design, $phi$ is surjective between fibers at all points of $Z$, so the coherent sheaf $F =
mcoker(phi)$ on $X$ has vanishing stalk at each $z in Z$. Hence, the coherent ideal sheaf $
mAnn_O_X(F)$ has associated closed subspace $X' subset X$ whose intersection with each irreducible $X_i$ is a proper analytic subspace (as $x_i
otin X'$ for all $i$). Since each irreducible component of $X'$ is contained in one of $X$ (by local finiteness considerations with analytic sets) it is therefore clear that the dimension $d'$ of $X'$ is strictly smaller than $d$. (If we are so lucky that $X'$ is empty then I suppose we declare $d' = -infty$; whatever.)By induction on dimension, $F$ viewed as a coherent sheaf on $X'$ (with all fibers of dimension at most $r$) is generated by a finite set of global sections. These lift to global sections of $E$ due to the Stein property of $X$, and together with the $s_j$'s above constitute a finite global generating set of $E$ due to Nakayama's Lemma.QED
1. almost holomorphic line bundles
I think you actually have to define the triple $(J_L,J_M,
abla)$ to be an almost holomorphic structure on $Lto M$ if there are local nonzero holomorphic sections everywhere, since the definition of 'holomorphic section' depends on $
abla$ as well as the choice of $J_L$ and $J_M$. Also, your choice of $J_L$ on the 'symplectic' bundle $Lto M$ reduces its structure to an $mathrmSO(2)$-structure, so the $2$-plane bundle $L$ with this structure is just an oriented Euclidean $2$-plane bundle. Any two reductions of structure of an oriented $2$-plane bundle from $mathrmGL_(2,mathbbR)$ to $mathrmSO(2)$ are equivalent, so there's really no information in that. It's the $mathrmSO(2)$-connection $
abla$ and the almost complex structure $J_M$ that carry all of the geometry, so you really should be defining your 'almost holomorphic structure in terms of the pair $(J_M,
abla)$.Now, when the dimension of $M$ is greater than $2$ and $J_M$ is generic, then there are no nonconstant local holomorphic functions on $M$. This means that, if you have two nonvanishing 'holomorphic' sections of $(L,
abla)$, then, on overlaps, the ratio of the two (which must be a local holomorphic function), will have to be constant, and hence the bundle $L$ will have a flat connection. This will imply that the Euler class of the $2$-plane bundle is zero, so that $L$ will be a trivial bundle if $M$ is simply connected.In special cases, when $(M, J_M)$ admits nonconstant local holomorphic functions, you can get nontrivial bundles $L$, but that's rare.This is not a complete answer, but it gives you an idea of what to look for and how you might think about modifying your question.
2. Can We understand Vector Bundles as pushouts?
The quotient of an object $X$ by an equivalence relation $Rsubset Xtimes X$, in any category with enough structure, is defined as the coequalizer of the two projections $Rstackreltoto X$. Any coequalizer can be written as the pushout of the corresponding span $Xleftarrow Rsqcup Xto X$, so in that sense your vector bundle is a pushout, but that's not a very natural viewpoint.The most natural diagram to use here has, I think, a more complicated shape. Consider the poset structure on the set $S'=Asqcup Atimes A$ generated by $(alpha,beta)leq alpha$ and $(alpha,beta)leq beta$, for each $(alpha,beta)in Atimes A$. It is most natural, but immaterial, to also remove the diagonal of $Atimes A$ from $S'$, yielding finally a poset $S$. When $A$ contains two points, this construction yields the poset $alphaleftarrow (alpha,beta)
ightarrow beta$, so that colimits along $S$ for larger index sets $A$ are generalized pushouts. Now your vector bundle is the colimit of the $S$-indexed diagram of spaces sending $alphamapsto U_alphatimes mathbbR^n$, $(alpha,beta)mapsto p^-1(U_alphacap U_beta)$, and the comparison maps $(alpha,beta)leq alpha,(alpha,beta)leq beta$ to the restrictions of $h_alpha$ and $h_beta$, respectively. This colimit has exactly the desired effect of identifying $(x,v)$ with $h_beta h_alpha^-1(x,v)$ when sensible. It might be worth remarking that the same story describes how to describe a manifold as a colimit of its coordinate patches, and for many other situations in which objects are built by gluing together local data.
3. If two smooth manifolds are homeomorphic, then their stable tangent bundles are vector bundle isomorphic
The result you are hoping for is in fact false.In section 9 of Microbundles: Part I, Milnor constructs an open set $U subset mathbbR^m$. With its standard smooth structure, the (stable) tangent bundle of $UtimesmathbbR^k subset mathbbR^mk$ is trivial, while in Corollary 9. 3, Milnor shows that it admits a smooth structure for which the tangent bundle has a non-zero Pontryagin class. As Pontryagin classes are stable, the stable tangent bundle of the latter manifold is not trivial, and hence not isomorphic to the stable tangent bundle of $UtimesmathbbR^k$ with its standard smooth structure
{"site":{"site_id":1916,"site_type":11,"site_domain":"virgin-human-hair.com","domain_mode":1,"original_domain":"virgin-human-hair.com","language_code":"de","is_init_domain":0,"is_shop":true,"is_ssl":1,"lang_prefix":"/","animate_name":"none"},"page":{"page_id":89504,"page_type":"ai_article_detail","page_code":423,"page_url":"/ai-article/trivialisation-of-vector-bundles-on-stein-spaces.html","page_source":"","allowAnimat":0,"content_id":2724,"content_type":5,"detail_thumb":"https://img.yfisher.com/1616659814328.jpg","detail_title":"Trivialisation of Vector Bundles on Stein Spaces","moq":1},"translateList":{"A new item has been added to your Shopping Cart":"Ein neuer Artikel wurde in Ihren Warenkorb hinzugefügt","account":"Konto","Account Name":"Kontobezeichnung","Account Number":"Kontonummer","Account is not exists":"Konto ist nicht vorhanden","account security":"Konto Sicherheit","Active Commission":"Aktive Kommission","Add a review on the product":"Fügen Sie eine Bewertung zu dem Produkt hinzu","Add to":"Hinzufügen","Add to Cart":"in den Warenkorb legen","address book":"Adressbuch","affiliate links":"Affiliate -Links","all":"alle","All Orders":"Alle Bestellungen","Already commented":"Bereits kommentiert","Are you sure to cancel this withdrawal?":"Sind Sie sicher, diese Auszahlung zu stornieren?","Are you sure to delete the selected items?":"Sind Sie sicher, die ausgewählten Elemente zu löschen?","Are you sure you want to delete it?":"Bist du sicher, dass du es löschen willst?","Awaiting Payment":"warten auf zahlung","Awaiting Shipment":"Warte auf Lieferung","Back":"Zurück","Bank Transfer":"Banküberweisung","bank address":"Bankadresse","basic information":"Grundinformation","Buy":"Kaufen","Buy Now":"kaufe jetzt","bank name":"Bank Name","city":"Stadt","Copy successful":"Erfolgreich kopieren","Copy failed":"Kopie fehlgeschlagen","Can Extract":"Kann extrahieren","Currency Type":"Währungstyp","Cancel":"stornieren","Cancel the success":"Den Erfolg stornieren","Cancelled":"Abgesagt","Choose a country":"Wähle ein Land","Choose Coupon":"Wählen Sie Gutschein","Choose items":"Wählen Sie Elemente","Clear":"Klar","Clear Search":"Saubere Suche","Comment Successful!":"Kommentar erfolgreich!","Comment Failed!":"Kommentar fehlgeschlagen!","Commission Details":"Auftragsdetails","Commission":"Kommission","Commission Status":"Provisionsstatus","commodity payment":"Rohstoffzahlung","completed":"completed","Completed":"abgeschlossen","Condition not met":"Zustand nicht erfüllt","Confirm":"Bestätigen Sie","Confirm password is inconsistent with new password":"Passwort bestätigen ist inkonsistent mit neuem Passwort","Congratulations":"Glückwünsche","Congratulations! You are got a coupon.":"Glückwünsche! Du hast einen Gutschein.","Congratulations! You are got all coupons.":"Glückwünsche! Du hast alle Gutscheine.","Continue":"fortsetzen","Continue Shopping":"mit dem Einkaufen fortfahren","Copy the code and use it directly in the shopping cart.":"Kopieren Sie den Code und verwenden Sie es direkt im Warenkorb.","Country":"Land","Coupon code":"Gutscheincode","Coupon List":"Couponliste","Date":"Datum","days after receiving":"Tage nach dem Empfang","Design customization":"Design-Anpassung","Do not use any discount":"Verwenden Sie keinen Rabatt","Earliest":"Früheste","Export successful":"Erfolgreich exportieren","Export failed":"Export fehlgeschlagen","email":"Email","email format does not match":"E-Mail-Format stimmt nicht überein","Estimated Delivery Time":"Voraussichtliche Lieferzeit","Effective Order Count":"Effektive Auftragszahl","Effective Sale Amount":"Effektiver Verkaufsbetrag","Expense":"Kosten","expired":"abgelaufen","export a report?":"einen Bericht exportieren?","Failed to upload files.":"Failed to upload files.","FAQ":"FAQ","Find Parts":"Teile finden.","for order over":"für Reihenfolge vorbei","Free":"Kostenlos","Free Quote & Information Request":"Kostenlose Zitat- und Informationsanfrage","Free Shipping":"Kostenloser Versand","Get":"Bekommen","Get coupons":"Gutscheine bekommen.","Get discount":"Rabatt bekommen","Get it":"Kapiert","Get it after logging in and use it in the shopping cart.":"Holen Sie sich nach dem Anmelden und verwenden Sie es im Warenkorb.","Go to Page":"Gehen Sie zur Seite","Highest Price":"Höchster Preis","home":"Zuhause","Hot Sale":"Schlussverkauf","Income":"Einkommen","Incorrect form format":"Falsches Format Format.","Inquiry":"Anfrage","join guide":"Tret Guide","Last 30 days":"Letzte 30 Tage","Last 7 days":"Letzten 7 Tage","Links report":"Links Bericht","Loading":"Wird geladen","Lowest Price":"Geringster Preis","Match Product":"Passenden Produkt.","Merchant Free Shipping":"Händler versandkostenfrei.","message":"Botschaft","Most Popular":"Am beliebtesten","my account":"mein Konto","my coupons":"meine Gutscheine","my inquiry":"meine Anfrage","my orders":"meine Bestellungen","my reviews":"meine Rezensionen","my wishlist":"Meine Wunschliste","name":"Name","New Arrival":"Neuankömmling","Newest":"Neueste","No Quotation":"Kein Zitat","No time limit":"Keine Zeitbegrenzung","Not deleted":"Nicht gelöscht","not valid yet":"noch nicht gültig","Off":"Aus","Offers and Discounts":"Angebote und Rabatte.","ok":"OK","Only DOC,DOCX,PDF,PNG,JPEG and JPG files can be uploaded":"Nur DOC-, DOCX-, PDF-, PNG-, JPEG- und JPG -Dateien können hochgeladen werden","optional":"Optional","order notes":"Bestellhinweise","Order over":"Bestellen","order id":"Auftragsnummer","order status":"Bestellstatus","order amount":"Bestellbetrag","Orders Report":"Bestellungsbericht","Other":"Sonstiges","Password contains at least numbers and letters length should be 6-20":"Das Passwort enthält mindestens Nummern- und Buchstabenlänge sollte 6-20 betragen","Password is invalid":"Passwort ist ungültig","Password length should be 6-20":"Die Passwortlänge sollte 6-20 betragen","Paypal":"Paypal","paypal payment":"PayPal Bezahlung","Pending":"Ausstehend","Pending Commission":"Ausstehende Kommission","personal info":"persönliche Informationen","Please click ’click to continue’ to retry.":"Bitte klicken Sie auf \"Klicken, um fortzufahren\", um erneut zu versuchen.","Please contact customer service for cash withdrawal":"Bitte wenden Sie sich an den Kundendienst, um Bargeldabhebung zu erhalten","Please enter a valid email address":"Bitte geben Sie eine gültige E-Mail-Adresse ein","Please enter the verification code":"Bitte geben Sie den Bestätigungscode ein","phone can only be numbers or line":"Telefon kann nur Zahlen oder Zeile sein","Please login in first":"Bitte loggen Sie sich in der ersten an","Please select attribute":"Bitte wählen Sie Attribut aus","Please select country/region":"Bitte wählen Sie Land / Region","Please select superior":"Bitte wählen Sie den Superior aus","Please select the number of ratings.":"Bitte wählen Sie die Anzahl der Bewertungen aus.","Please select your country":"Bitte wählen Sie Ihr Land","Please upload the invoice file":"Bitte laden Sie die Rechnungsdatei hoch","Processing":"wird bearbeitet","Product Name":"Produktname","Please fill in the delivery address before selecting the payment method":"Bitte geben Sie die Lieferadresse aus, bevor Sie die Zahlungsmethode auswählen","promotion center":"Promotion Center","Promotion Link Click Amount":"Promotion -Link Klicken Sie auf Menge","Promoted link clicks":"Beförderte Linkklicks","Promotion Order Count":"Promotion Order Count","Promotion Reports":"Werbeberichte","read more":"Weiterlesen","Received commission":"Provision erhalten","Refund":"Erstattung","Refuse":"Sich weigern","Region":"Region","Register Success":"Erfolg registrieren","Remittance":"Überweisung","Reviews":"Bewertungen","reports":"Berichte","Sale ends in":"Verkauf endet in.","Save in wishlist":"Speichern in Wunschzettel.","Search":"Suche","swift code":"SWIFT-Code","Select how to share":"Wählen Sie, wie Sie teilen können","Select premium items to increase your chances of making money":"Wählen Sie Premium -Artikel aus, um Ihre Chancen zu erhöhen, Geld zu verdienen","Share items to your channels.when other purchase a from your link, you can get commission.":"Share items to your channels.when other purchase a from your link, you can get commission.","Share Product":"Aktienprodukt","shipment successful":"Sendung erfolgreich","Shipping":"Versand","Shipping Address":"Lieferanschrift","Size guide":"Größentabelle","Small Text":"Kleiner Text","Small Title":"Kleiner Titel","Sort By":"Sortiere nach","Sales Amount":"Verkaufsmenge","State/Province/Territory":"Bundesstaat / Provinz / Territorium","Successfully delete":"Erfolgreich löschen","Successfully save":"Erfolgreich sparen","Thank you for trying":"Danke für den Versuch","The account has been deactivated, please contact customer service to activate":"Das Konto wurde deaktiviert. Bitte wenden Sie sich an den Kundendienst, um sie zu aktivieren","Thank you for your application to join our affiliate program, we will review and verify your information as soon as possible and notify you.":"Vielen Dank für Ihre Bewerbung, um an unserem Partnerprogramm teilzunehmen. Wir werden Ihre Informationen so schnell wie möglich überprüfen und überprüfen und Sie benachrichtigen.","the content can not be blank":"Der Inhalt kann nicht leer sein","The coupon code has been copied and used in the shopping cart.":"Der Gutscheincode wurde im Warenkorb kopiert und verwendet.","The file name cannot exceed 100 characters":"Der Dateiname darf 100 Zeichen nicht überschreiten","The file size cannot exceed 2MB":"Die Dateigröße darf 2 MB nicht überschreiten","The number of withdrawals on the day has been capped":"Die Anzahl der Abhebungen an diesem Tag wurde begrenzt","The subscription is successful, thank you for your participation":"Das Abonnement ist erfolgreich, danke für Ihre Teilnahme","The user center is out of service. Please contact customer service":"Das Benutzerzentrum ist außer Betrieb. Bitte wenden Sie sich an den Kundendienst","There is no amount to withdraw":"Es gibt keinen Betrag, um sich zurückzuziehen","There is no data to export":"Es gibt keine Daten zum Exportieren","This is Text":"Dies ist Text.","This is title":"Dies ist Titel","This transaction has failed.":"Diese Transaktion ist fehlgeschlagen.","Time to shop":"Zeit zum Einkaufen","Tips":"Tipps","To be commented":"Kommentiert werden","Total":"Gesamt","Tutorial":"Lernprogramm","This Supplier/Shipping Company does not deliver to your selected Country/Region.":"Diese Lieferant/Reederei liefert nicht in Ihr ausgewähltes Land/Ihre Region.","Update password success":"Passwort-Erfolg aktualisieren.","Upload Image":"Bild hochladen","Upload up to 6 pictures":"Laden Sie bis zu 6 Bilder hoch","uploading":"Hochladen","used":"benutzt","user center":"Benutzerzentrum","Upload Invoice":"Rechnung hochladen","valid now":"JETZT Gültig","Validity period":"Gültigkeitszeitraum","View Cart & Checkout":"Warenkorb ansehen","views":"Ansichten","Valid for":"Gültig für","Welcome to the website":"Willkommen auf der Website","Western Union":"Western Union","When your buyers received and confirmed orders, you can get commission right now!":"Wenn Ihre Käufer Bestellungen erhalten und bestätigt haben, können Sie jetzt Provision erhalten!","Withdrawal":"Rückzug","Withdrawal success":"Rückzugserfolg","Withdrawal Method":"Rückzugsmethode","Write a Review":"Eine Rezension schreiben","Withdrawal Amount":"Auszahlungsbetrag","Yes":"Ja","Yesterday":"Gestern","You are clicking too fast":"Sie klicken zu schnell","You are got a coupon.":"Du hast einen Gutschein.","You can select a maximum of 90 days":"Sie können maximal 90 Tage auswählen","You can withdraw the commission to your Paypal account.":"Sie können die Provision auf Ihr PayPal -Konto abheben.","You have applied to join the Affiliate Program.":"Sie haben sich für das Partnerprogramm beworben.","You will be notified of the review result via email.":"Sie werden über das Überprüfungsergebnis per E -Mail informiert.","You haven’t chosen an address yet":"Sie haben noch keine Adresse ausgewählt","You haven’t selected a product yet":"Sie haben noch kein Produkt ausgewählt","Your rating":"Deine Bewertung","Your review":"Deine Bewertung","Your shipping address error":"Ihr Versandadressenfehler"}}